
Prediktivt underhåll baserat på artificiell intelligens och maskininlärning är ett topprankat användarfall med avseende på affärsnytta inom industriell digitalisering. Inte så konstigt med tanke på att Svensk tillverkningsindustri årligen betalar över 100 miljarder kr i underhållsrelaterade kostnader och 60% av alla underhållsaktiviteter är reaktiva.
Projektet PACA, som koordineras av Chalmers, har som mål att utveckla algoritmer för prediktivt underhåll, baserat på avancerad klusteranalys, för att öka precisionen och förståelse hos en beslutsfattare.
Dataströmmar kommer generera ny kunskap
Tre användarfall kommer att tillhandahålla multipla dataströmmar (sensorer och datorsystem) från flera maskiner. Data kommer att analyseras tillsammans för att kunna identifiera intressanta mönster som kan jämföras mellan de olika maskinerna samt deras historiska loggar. Detta kommer att generera kunskap om hur olika mönster korrelerar med slitage, vilket senare kan användas för att designa en algoritm som predikterar framtida tillstånd/haverier av maskiner.
För smartare underhåll
Förväntade effekter inkluderar ökad produktivitet, robusthet, resursutnyttjande och kompetens inom Smart Underhåll och avancerad dataanalys. Konsortiet är tvärvetenskapligt och består av tillverkningsbolag, service och IT leverantörer samt universitet och högskola med expertis inom både Smart Underhåll och avancerad dataanalys.