Search result
Systems Biology
Translational Bioinformatics
2015-2018
The pharmaceutical industry has an urgent need for in vitro model systems with high human relevance that can be used for toxicity testing, drug development, and disease modelling. The project aims at developing a human in vitro model based on human pluripotent stem cells that can mimic important aspects of the blood-brain-barrier.
Systems Biology
Translational Bioinformatics
2020-2024
Artificial intelligence (AI) is an important driving force that is rapidly transforming health care and pharmaceutical industries in several ways. The vast amount of biomedical data available today poses unique opportunities to develop a repertoire of AI-based models. Although the results from studies using AI for solving biomedical problems are encouraging, there are numerous scientific challenges associated with AI for life science applications that need to be addressed.
Systems Biology
Translational Bioinformatics
2015-2019
The aim of this project is to contribute with improved methods for analysis, integration, and visualization of biomedical big data. Recent years it has been a massive digitalization of all types of data and information in the society and the majority of all information in the world is nowadays anticipated to be digitalized. This encompasses enormous possibilities for generation of new knowledge but also puts demands on competence and tools for analysis and interpretation of big and complex data, e.g. to identify and extract patterns and information from different data sources. To meet these increasing demands of large-scale data analysis more competence, better and faster algorithms, and powerful computers are needed for execution these algorithms.
Systems Biology
Translational Bioinformatics
2017-2022
This project is one of the three subprojects within the synergy project BioMine - Data-mining for biomarker discovery, selection, and validation. In this subproject we investigate how large-scale biomolecular data can be used to identify specific biomarkers for disease modelling
Systems Biology
Translational Bioinformatics
2017-2022
This project is one of the three subprojects within the synergy project BioMine - Data-mining for biomarker discovery, selection, and validation. In this subproject we investigate how large-scale biomolecular data can be used to identify specific biomarkers for toxicity testing. The project is performed in close collaboration between the University of Skövde, AstraZeneca Gothenburg and Takara Bio Europe.
Systems Biology
Translational Bioinformatics
2017-2021
The advancement in stem cell research over the last decade has now made it possible to generate large quantities of human specialized cells for in vitro applications. Specifically, in the drug discovery and development process this has important implications. The project involves studies of the genetic and molecular basis of hypertrophy and aims to develop new knowledge that can contribute to the development of novel therapies and treatments that can reduce cardiovascular morbidity and mortality.
Systems Biology
Translational Bioinformatics
2022-2024
In this project we develop and implement an innovative Deep-Learning (DL) based method for quality assessment for industrial use. By using human embryonic stem cells as a model system, we develop in different steps a neural network (NN) classifier for a stepwise prediction of the cell state (quality) of these cells using quantitative PCR (qPCR) data.
Systems Biology
Translational Bioinformatics
2019-2021
The Transplant Tissue Engineering (TransTissuE) is a collaboration project between the University of Skövde, VERIGRAFT and XVIVO. We develop methods and strategies for optimization of the production process of personalized tissue-engineered vascular transplants.